75 research outputs found

    Identification of fungal lignocellulose-degrading biocatalysts secreted by Phanerochaete chrysosporium via activity-based protein profiling

    Get PDF
    Activity-based protein profiling is used to screen lignocellulose-degrading enzymes from the white rot fungus Phanerochaete chrysosporium to identify those specifically active in the presence of wood substrate.Activity-based protein profiling (ABPP) has emerged as a versatile biochemical method for studying enzyme activity under various physiological conditions, with applications so far mainly in biomedicine. Here, we show the potential of ABPP in the discovery of biocatalysts from the thermophilic and lignocellulose-degrading white rot fungus Phanerochaete chrysosporium. By employing a comparative ABPP-based functional screen, including a direct profiling of wood substrate-bound enzymes, we identify those lignocellulose-degrading carbohydrate esterase (CE1 and CE15) and glycoside hydrolase (GH3, GH5, GH16, GH17, GH18, GH25, GH30, GH74 and GH79) enzymes specifically active in presence of the substrate. As expression of fungal enzymes remains challenging, our ABPP-mediated approach represents a preselection procedure for focusing experimental efforts on the most promising biocatalysts. Furthermore, this approach may also allow the functional annotation of domains-of-unknown functions (DUFs). The ABPP-based biocatalyst screening described here may thus allow the identification of active enzymes in a process of interest and the elucidation of novel biocatalysts that share no sequence similarity to known counterparts.Bio-organic Synthesi

    A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose

    Get PDF
    Archaea are characterised by a complex metabolism with many unique enzymes that differ from their bacterial and eukaryotic counterparts. The thermoacidophilic archaeon Sulfolobus solfataricus is known for its metabolic versatility and is able to utilize a great variety of different carbon sources. However, the underlying degradation pathways and their regulation are often unknown. In this work, we analyse growth on different carbon sources using an integrated systems biology approach. The comparison of growth on L-fucose and D-glucose allows first insights into the genome-wide changes in response to the two carbon sources and revealed a new pathway for L-fucose degradation in S. solfataricus. During growth on L-fucose we observed major changes in the central carbon metabolic network, as well as an increased activity of the glyoxylate bypass and the 3-hydroxypropionate/4-hydroxybutyrate cycle. Within the newly discovered pathway for L-fucose degradation the following key reactions were identified: (i) L-fucose oxidation to L-fuconate via a dehydrogenase, (ii) dehydration to 2-keto-3-deoxy-L-fuconate via dehydratase, (iii) 2-keto-3-deoxy-L-fuconate cleavage to pyruvate and L-lactaldehyde via aldolase and (iv) L-lactaldehyde conversion to L-lactate via aldehyde dehydrogenase. This pathway as well as L-fucose transport shows interesting overlaps to the D-arabinose pathway, representing another example for pathway promiscuity in Sulfolobus species

    The Nanostructure of Myoendothelial Junctions Contributes to Signal Rectification between Endothelial and Vascular Smooth Muscle Cells

    Get PDF
    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross talk between the two cell layers is important in regulating blood pressure and flow. We have used a spatiotemporal mathematical model to investigate how the myoendothelial junctions affect the information flow between the two cell layers. The geometry of the model mimics the structure of the two cell types and the myoendothelial junction. The model is implemented as a 2D axi-symmetrical model and solved using the finite element method. We have simulated diffusion of Ca2+ and IP3 between the two cell types and we show that the micro-anatomical structure of the myoendothelial junction in itself may rectify a signal between the two cell layers. The rectification is caused by the asymmetrical structure of the myoendothelial junction. Because the head of the myoendothelial junction is separated from the cell it is attached to by a narrow neck region, a signal generated in the neighboring cell can easily drive a concentration change in the head of the myoendothelial protrusion. Subsequently the signal can be amplified in the head, and activate the entire cell. In contrast, a signal in the cell from which the myoendothelial junction originates will be attenuated and delayed in the neck region as it travels into the head of the myoendothelial junction and the neighboring cell

    Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): recruitment, retention, and data availability in a longitudinal remote measurement study

    Get PDF
    BACKGROUND: Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. METHODS: Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse – Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. RESULTS: Individuals with a history of MDD (n = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. CONCLUSIONS: RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12888-022-03753-1

    Fluorinated Cyclic Polysulfides and Their Polymers

    No full text
    • …
    corecore